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1. Introduction

The scaling dimension ∆ for twist two operators at large values of the Lorentz spin S is

characterized by the universal scaling function (cusp anomalous dimension) f(g):

∆ − S = f(g) ln S + . . . ,

with g =
√

g2
YMN/4π. The logarithmic dependence of the dimension on large Lorentz

spin is a generic feature that has been independently observed for both N = 4 SYM and

the corresponding string theory dual, see e.g. [1]–[4]. Importantly, such a scaling behavior

stems [5, 6] from the large spin limit of the Bethe equations [7]–[10] which underlie the

integrable structures of gauge and string theories. A linear integral equation arising in the

large spin limit from the postulated set of gauge/string Bethe equations has been recently

derived in [11]. We will refer to it as the BES equation. This equation allows one to

compute the universal scaling function f(g) to any desired order in perturbation theory.

For instance, for the first few orders one obtains

f(g) = 8g2 − 8

3
π2g4 + . . .

Remarkably, independent gauge theory computations [12, 13] confirm this result up to four

loop orders, i.e. up to g8.
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Schematically, the BES equation has the following form

σ(t) = 1 + g2

∫

K(t, t′)σ(t′)dt′ ,

where K(t, t′) = K(m)(t, t′) + κK(c)(t, t′) and κ = 2. Here K(m) is the so-called main

scattering kernel and K(c) is the dressing kernel. The dressing kernel arises upon taking

into account an additional scattering phase in the S-matrix which is apparently needed

to achieve an agreement with string theory predictions in the strong coupling limit [8].

This phase is also the only freedom in the S-matrix which cannot be fixed by symmetry

arguments [14].1 The form of the phase is largely but not completely constrained by an

additional requirement of crossing symmetry [18]. The constraints arising from crossing

symmetry were shown to hold [19] at two leading orders in string perturbation theory [8, 20].

Recently an interesting solution for the crossing symmetric phase has been obtained [21]

which agrees nicely with all available string and field-theoretic data.

The agreement observed at the four loop level between the scaling function of BES and

the results obtained in the field-theoretic framework is very important, because it implies

the appearance of the additional scattering phase in perturbation theory and, therefore, it

distinguishes the BES equation from the earlier proposal [6] which corresponds to taking

κ = 0.

According to the AdS/CFT duality [22] the large g behavior of f(g) can be extracted

by studying the energy of the folded string spinning in the AdS3 part of the target space

(the GKP solution) and it turns out to be [2, 3]

f(g) = 4g − 3 ln 2

π
+ . . . (1.1)

In the recent work [23] and [24] an important question was addressed, namely, how the

perturbative expansion controlled by the BES equation can be extrapolated to large val-

ues of the coupling constant and wether the resulting expression is consistent with the

string theory predictions. In particular, in [23] a numerical method was devised to solve

the BES equation around the strong coupling point and numerical solutions were shown

to be in perfect agreement with eq. (1.1), providing a non-trivial test of the AdS/CFT

correspondence.

In this paper we identify two equations satisfied by the leading term of the density

σ(t) in the large g expansion. One of them arises from the leading large g limit of the

BES equation, and the other appears at the subleading order. Together these equations

completely fix the leading σ(t) and we find their analytic solution, which is in excellent

agreement with the numerical results.

Upon making the Fourier transform to the rapidity u-plane the corresponding density

σ(u) reads

σ(u) =
1

4πg2






1 − θ(|u| − 1)√

2

√

√

√

√
1 +

1
√

1 − 1
u2






,

1See [15]–[17] for recent studies of the string S-matrix and its symmetries.
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Figure 1: The plot of the analytic solution for the leading density 4πg2σ(u).

where θ(u) is the step function. Thus, on the rapidity plane the leading density is an

algebraic function which is constant in the interval |u| < 1. We see that, in contrast to

the weak coupling solution of the BES equation [11], the strong coupling density exhibits

a gap between [−∞,−1] and [1,∞], see figure 1. Remarkably, this is reminiscent of the

behavior of the corresponding solutions describing classical spinning strings. We also would

like to point out that the strong coupling solution of the BES equation we have found is

apparently different from the singular solution χsing discussed in [24].

The paper is organized as follows. In section 2 we analyze the matrix form of the

BES equation at strong coupling, first numerically and then analytically. We compute the

coefficients in the expansion of σ(t) in terms of Bessel functions and based on this numerical

analysis we make a guess of how these coefficients could be (partially) related to each other

at strong coupling. In the strong coupling limit we obtain an analytic equation for the

coefficients which turns out to have a degenerate kernel. Supplementing this equation with

the proposed relation among the coefficients allows us to find an exact analytical solution

for σ(t). We then show that in fact no guess is necessary if one expands the BES equation

to higher order in 1/g, which leads to a second equation that singles out our solution as

the correct one.

We proceed to find an analogous pair of equations for the subleading coefficients at

strong coupling. Again they appear at different orders in the inverse coupling constant, each

of them individually being a degenerate, half-rank equation. We identify some constraints

on the subleading value of σ(t), but postpone a detailed analysis of the strong coupling

perturbation theory to a future publication. In section 3 we analyze the BES equation at

strong coupling in the Fourier space and verify that the results of section 2 agree with this

analysis. Finally, we end with conclusions and open problems.

2. BES matrix equation at strong coupling

In this section we study the density of fluctuations σ(t) for large values of the coupling

constant. First we argue, by performing numerical analysis, that σ(t) obeys a certain

additional requirement. Then we consider the matrix BES equation at leading order in the

– 3 –
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large g expansion, use the previously found requirement to solve for the density and confirm

by expanding the BES equation further that this solution is in fact complete determined

analytically. Finally, we derive and briefly discuss constraints on the subleading value of

σ(t).

2.1 Numerical studies of σ(t)

The universal scaling function is related to σ(t) as follows

f(g) = 16g2σ(0) , (2.1)

where the density of fluctuations σ(t) satisfies the following integral equation [6, 11]

σ(t) =
t

et − 1

(

K(2gt, 0) − 4g2

∫ ∞

0
dt′ K(2gt, 2gt′)σ(t′)

)

. (2.2)

The kernel separates into two pieces, the main scattering kernel K(m) and the dressing

kernel K(c)

K(t, t′) = K(m)(t, t′) + 2K(c)(t, t′) , (2.3)

which are expressed in terms of Bessel functions as follows

K(m)(t, t′) =
J1(t)J0(t

′) − J0(t)J1(t
′)

t − t′
,

K(c)(t, t′) = 4g2

∫ ∞

0
dt′′ K1(t, 2gt′′)

t′′

et′′ − 1
K0(2gt′′, t′) .

Here K0 and K1 denote even and odd parts of the kernel under change of the sign of the

arguments:

K0(t, t
′) =

tJ1(t)J0(t
′) − t′J0(t)J1(t

′)

t2 − t′2
=

2

tt′

∞
∑

n=1

(2n − 1)J2n−1(t)J2n−1(t
′) ,

K1(t, t
′) =

t′J1(t)J0(t
′) − tJ0(t)J1(t

′)

t2 − t′2
=

2

tt′

∞
∑

n=1

2nJ2n(t)J2n(t′) . (2.4)

As was shown in [23], if one introduces a function

s(t) =
et − 1

t
σ(t) (2.5)

and expands s(t) in the following series

s(t) =
∞
∑

n=1

sn
Jn(2gt)

2gt
(2.6)

then eq. (2.2) transforms into a matrix equation for the vector s = (s1, s2, s3, . . .)
t

(1 + K(m) + 2K(c))s = (1 + 2C)e . (2.7)
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Here e = (1, 0, 0, 0, . . .)t and K(m), K(c), C are infinite-dimensional matrices with the

entries

K(m)
mn = 2(NZ)mn ,

K(c)
mn = 2(CZ)mn ,

Cmn = 2(PNZQN)mn ,

where Q = diag(1, 0, 1, 0, . . .), P = diag(0, 1, 0, 1, . . .) and N = diag(1, 2, 3, . . .). The

coupling constant enters into the matrix Z whose entries are given by

Zmn =

∫ ∞

0
dt

Jm(2gt)Jn(2gt)

t(et − 1)
. (2.8)

The key observation is that for intermediate values of g, for instance 2 < g < 20, one

can approximate the infinite-dimensional matrices entering the BES equation by matrices

of finite rank d, with d not much larger than g. With matrices of finite rank it is possible

to solve numerically for the coefficients sk for different values of the coupling constant and

to find the best fit result for an expansion of the type

sk =
1

g
sℓ
k +

1

g2
ssℓ
k + . . . (2.9)

As the numerical analysis indicates, the finite rank approximation is valid for computing

the coefficients sk with k ≪ d. We have solved numerically eq. (2.7) for numerous points

in the range 2 < g < 20 and use d = 50. In the table below the values for a few leading

coefficients sℓ
k are exhibited.

k sℓ
2k−1 sℓ

2k 100|(sℓ
2k−1 − sℓ

2k)/s
ℓ
2k|

1 0.500006 0.499993 0.003

2 -0.75005 -0.74977 0.038

3 0.93727 0.93676 0.055

4 -1.09281 -1.09415 0.12

5 1.2239 1.2333 0.77

Some comments are in order. First, notice that the value for sℓ
1 is in perfect agreement

with the value predicted from string theory sℓ
1 = 1/2 and confirmed numerically (with a

precision higher than the one presented here) by [23]. Second, notice that the difference

between sℓ
2k−1 and sℓ

2k is in all the cases smaller than 1%, and gets bigger as k increases;

this is related to the fact that the rank of the matrices is finite.

Thus, the numerical analysis suggests that in the limit of infinite rank matrices the

following relation holds for the leading coefficients in the strong coupling expansion

sℓ
2k−1 = sℓ

2k . (2.10)

As we will see later on, this condition will allow one to solve analytically for the coefficients

sℓ
k and the values obtained will be in perfect agreement with the ones computed numerically.
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Further evidence comes from the fact that one can approximate the matrix elements

Zmn by their analytic values at strong coupling (see next subsection). Therefore, one can

consider matrices of much higher rank, fix a sufficiently large value of g and compute

(numerically) the coefficients sℓ
k. Below we present the results for g = 10000 and d = 250.

k sℓ
2k−1 sℓ

2k 100|(sℓ
2k−1 − sℓ

2k)/s
ℓ
2k|

1 0.49993 0.49991 0.0049

2 -0.74943 -0.74938 0.0073

3 0.93585 0.93577 0.0085

4 -1.09033 -1.09023 0.0089

5 1.22455 1.22444 0.0087

As d increases, we see that the difference between sℓ
2k−1 and sℓ

2k (for k = 2, 3, 4) decreases

considerably. Also, the difference is approximately constant for small values of k. We

should stress, however, that a priory there is no reason to expect the results obtained by

keeping in the BES equation only the leading term for Z to be valid, since as we will see

the subleading terms in the matrix elements Zmn are necessary to fix uniquely the leading

order solution for sk. Surprisingly, one still obtains a good approximation to the large g

solution in this fashion. Nevertheless, we regard the present computation as less robust.

To conclude, requiring continuity in g, the leading coefficients sℓ
k in the strong coupling

expansion of the function σ(t) exhibit the relation (2.10), which constraints a possible form

of σ(t).

2.2 Analytic solution at strong coupling

For finite real values of g the matrix element Zmn is given by a convergent integral. How-

ever, there are subtleties in developing its power series in 1/g. Indeed, expanding the

integrand in eq. (2.8) as

Zmn =

∫ ∞

0
dt

Jm(t)Jn(t)

t

(

2g

t
− 1

2
+

t

24g
+ . . .

)

,

leads to a power series (with coefficients given essentially by the Bernoulli numbers) which

converges only for |t/(2g)| < 2π. We see that only the first two leading terms in this

expansion can be integrated, while already in the third term divergent integrals appear.

They signal the appearance of terms ln(g)/gn with n > 0.2 The expansion of Z thus

assumes the form

Z = gZℓ + Zsℓ + . . . , (2.11)

2From the string theory point of view, the appearance of such terms could be an indication of IR

divergences of the world-sheet S-matrix starting at two loops. Further analysis is needed to clarify this

issue.
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where the first two terms, Zℓ and Zsℓ, are given by the convergent integrals mentioned

above. Explicitly, they are

Zℓ
mn = − 8

π

cos((m − n)π/2)

(m + n + 1)(m + n − 1)(m − n + 1)(m − n − 1)
,

Zsℓ
mn = − 1

π

sin((m − n)π/2)

m2 − n2
. (2.12)

We have checked that numerical values for Zmn for large g are in a very good agreement

with the analytic expressions (2.12). In what follows we largely restrict our investigation

of the BES equation to the first two leading terms where ln(g) does not appear.

It is not hard to see that in the strong coupling limit eq. (2.7) implies the following

equation for the leading vector sℓ

K(c) ℓsℓ = Cℓe , (2.13)

where the leading matrices K(c) ℓ and Cℓ are obtained by keeping the leading contribution

Zℓ only. It turns out that for even values of d the kernel K(c) ℓ has rank d/2, hence from the

equation above it is possible to solve only for half of the components of s. However, now

the condition (2.10) enters into play. Imposing eq. (2.10) together with eq. (2.13) allows

one to uniquely determine the vector sℓ.

In order to find the solution in the limit of infinite d it is convenient to express the

leading equation in the following way

Koso + Kese =
1

2
e , (2.14)

where so, se are vectors of length d/2 comprising the odd and even components of sℓ

respectively: so = (sℓ
1, s

ℓ
3, s

ℓ
5, . . .)

t and se = (sℓ
2, s

ℓ
4, s

ℓ
6, . . .)

t. Further e = (1, 0, 0, . . .)t. It is

easy to check that eqs. (2.14) and (2.13) are equivalent provided

(Ko)mn = Zℓ
2m−1,2n−1 + Zℓ

2m+1,2n−1 , (Ke)mn = Zℓ
2m−1,2n + Zℓ

2m+1,2n . (2.15)

Then, we find that the unique solution of eq. (2.14) satisfying the relation so = se turns

out to be

sℓ
2k−1 = sℓ

2k = (−1)k+1 Γ(k + 1
2)

Γ(k)Γ(1
2 )

. (2.16)

This remarkably simple expression for the coefficients sℓ
k is the main result of this paper.

By using the following identities (true in the limit of infinite rank)

(Ke −1)mn = −4(−1)m+n+1mn2, n ≤ m

= −4(−1)m+n+1m3, n > m (2.17)

(Ke −1Ko)mn = (−1)m−n 32

π

m3

(4m2 − (1 − 2n)2)(1 − 2n)2

one can check explicitly that the coefficients (2.16) indeed solve eq. (2.14). Thus, we found

that restricting the coefficients sk to the leading order expressions sℓ
k the function s(t) is

– 7 –
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given by

s(t) =
1

g

∞
∑

k=1

(−1)k+1 Γ(k + 1
2)

Γ(k)Γ(1
2 )

J2k(2gt) + J2k−1(2gt)

2gt
, (2.18)

where we have omitted the subleading contributions. The last formula can be considered

as the leading term in the large g expansion of the density s(t, g) with gt kept finite. As

is clear from eq. (2.2), we are only interested in values of s(t) for t ≥ 0. The series can be

summed and for this range of t the result expressed in terms of the confluent hypergeometric

function of the second kind U(a, b, x):

s(t) = − i

8πg2t
e2igt

(

Γ(3
4)U(−1

4 , 0,−4igt) + Γ(5
4)U(1

4 , 0,−4igt)
)

+
i

8πg2t
e−2igt

(

Γ(3
4)U(−1

4 , 0, 4igt) + Γ(5
4)U(1

4 , 0, 4igt)
)

. (2.19)

The leading density (2.19) has a rather complicated profile. For gt → 0 it perfectly re-

produces the desired result s(t) → 1/4g. On the other hand, the asymptotic of s(t) for

gt → ∞ exhibits a highly oscillating behavior.

2.3 An alternative derivation of the strong coupling solution

Let us now show that the result (2.16) can in fact be derived without resorting to any aux-

iliary conditions obtained from numerical arguments. The degenerate equation appearing

at leading order, which can be used to express one half of the coefficients sn in terms of

the other, can be supplemented by another half-rank equation from subleading terms in

the BES equation. Together they determine a unique solution.3

Writing out the integral equation (2.2) in the basis (2.6) with explicit matrix indices

we find

sn
Jn(2gt)

2gt
=

J1(2gt)

2gt
+ 8nZ2n,1

J2n(2gt)

2gt
− 2nZnmsm

Jn(2gt)

2gt

−16n(2m − 1)Z2n,2m−1Z2m−1,rsr
J2n(2gt)

2gt
, (2.20)

where all indices are summed over from 1 to ∞. Now we split up the integral equation

according to powers of g and into odd and even rows (indices of Bessel functions).

At O(g) the odd equation is trivial and the even one reads:

2(2m − 1)Zℓ
2n,2m−1Z

ℓ
2m−1,rs

ℓ
r = Zℓ

2n,1 =
1

4
δn,1 . (2.21)

This is precisely eq. (2.13) employed in the previous subsection. At O(1) the odd rows lead

to the condition

Zℓ
2m−1,rs

ℓ
r =

1

2
δm,1 . (2.22)

3In the sense that for any finite rank the truncated system of equations has a unique solution which is

well-defined in the infinite rank limit.

– 8 –



J
H
E
P
0
4
(
2
0
0
7
)
0
8
2

Actually this equation implies the previous one. It determines one half of the coefficients

sℓ
n in terms of the other. Expanding further, at O(1) the even equation is given by

8nZsℓ
2n,1 − 4nZℓ

2n,msℓ
m − 16n(2m − 1)Zℓ

2n,2m−1Z
ℓ
2m−1,rs

sℓ
r

− 16n(2m − 1)Zℓ
2n,2m−1Z

sℓ
2m−1,rs

ℓ
r − 16n(2m − 1)Zsℓ

2n,2m−1Z
ℓ
2m−1,rs

ℓ
r = 0 . (2.23)

To determine the other half of the coefficients sℓ
n we need to eliminate ssℓ

n from this equation.

To do this we examine the odd equation at O(1/g)

−2(2m − 1)Zℓ
2m−1,rs

sℓ
r − 2(2m − 1)Zsℓ

2m−1,rs
ℓ
r = sℓ

2m−1 . (2.24)

Now we use (2.22) and (2.24) to simplify (2.23), which gives

Zℓ
2n,msℓ

m − 2Zℓ
2n,2m−1s

ℓ
2m−1 = Zℓ

2n,m(−1)msℓ
m = 0 . (2.25)

This is the second equation we were looking for, which together with (2.22) completely

determines sℓ
n. If we define a matrix Z̃nm which is identical to Znm except for a sign flip

when both n is even and m is odd, we can combine the two conditions into the full-rank

equation for the strong coupling solution

Z̃ℓ
nmsℓ

m =
1

2
δn,1 . (2.26)

Note that the additional minus signs in the definition of Z̃nm arise precisely because of the

introduction of the dressing kernel, and would by absent for κ = 0. Writing out (2.26)

explicitly shows that the sℓ
n have to satisfy

∞
∑

k=1

4(−1)n+k+1sℓ
2k−1

(2n − 2k − 1)(2n − 2k + 1)(2n + 2k − 3)(2n + 2k − 1)π

= − sℓ
2n

8n(2n − 1)
− sℓ

2n−2

8(n − 1)(2n − 1)
+

1

4
δn,1 , (2.27)

∞
∑

k=1

4(−1)n+k+1sℓ
2k

(2n − 2k − 1)(2n − 2k + 1)(2n + 2k − 1)(2n + 2k + 1)π

=
sℓ
2n+1

8n(2n + 1)
+

sℓ
2n−1

8n(2n − 1)
, (2.28)

for all n ≥ 1 (where it is understood that the second term on the right hand side of (2.27)

is absent for n = 1). Indeed these equations are obeyed by

sℓ
2n−1 = sℓ

2n =
(−1)n−1(2n − 1)!!

2n(n − 1)!
, (2.29)

which is precisely the solution (2.16) found in the previous subsection. To show this, note

that the coefficients sℓ
2n−1 are generated by the Taylor expansion of (1+x)−3/2, which makes

it easy to perform the above sums as integrals over functions of the form xm(1 − x2)−3/2

for some appropriate power m chosen to generate the necessary terms in the denominators

of the left hand sides of eqs. (2.27) and (2.28).
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2.4 Fluctuation density in the rapidity plane

To get more insight into the structure of the leading solution, we find it convenient to

perform the (inverse) Fourier transform of the density σ(t) → σ(u):

σ(u) =
1

2π

∫ ∞

−∞
dt ei 2gtue|t|/2σ(|t|) . (2.30)

We recall that u is a rapidity variable originally used to parameterize the Bethe root

distributions of gauge and string theory Bethe ansätze [7, 8], which gives another reason

for studying the density of fluctuations on the u-plane. Thus, substituting in eq. (2.30) the

power series expansion for σ(t) we get

σ(u) =
1

2π

∞
∑

n=1

sn

∫ ∞

−∞
dt ei 2gtue−|t|/2 |t|

1 − e−|t|

Jn(2g|t|)
2g|t| + . . .

For large values of g this expression can be well approximated as

σ(u) =
1

2π

∞
∑

n=1

sn

∫ ∞

−∞
dt ei 2gtue−|t|/2 Jn(2g|t|)

2g|t| + . . .

The last integral is computed by using the following formula [6]

∫ ∞

0
dt e±2giute−t/2 Jn(2gt)

2gt
=

(2g)n−1

n

(

u±
(

1 +
√

1 + 4g2/(u±)2
))−n

with u± = 1/2 ∓ 2igu.

In this way we obtain the following series representation for the density σ(u)

σ(u) =
1

2πg

∞
∑

n=1

snfn + . . . ,

where

fn =
(2g)n

2n

[

(

u+(1 +
√

1 + 4g2/(u+)2)
)−n

+
(

u−(1 +
√

1 + 4g2/(u−)2)
)−n

]

.

In what follows it is convenient to introduce the expansion parameter ǫ = 1/(2g). Our

considerations above suggest that the density σ(u) expands starting from the second order

in ǫ:

σ(u) = ǫ2σℓ(u) + ǫ3σsℓ(u) + . . . (2.31)

To find the leading contribution σℓ(u) we have to develop the large g expansion of the

functions fn. The result is not uniform, it depends on whether n is even or odd and also

on the value of u . For n even we find

f2k =















(−1)k

2k T2k(u) + O(ǫ) for |u| < 1 ,

(−1)k

2k

(

u
(

1 +
√

1 − 1
u2

))−2k
+ O(ǫ) for |u| > 1 .
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Figure 2: The left figure is the plot of a numerical solution for the leading density πσℓ(u). The

right figure represents an exact analytic solution for the same quantity.

Here T2k(u) are the Chebyshev polynomials of the first kind. For n odd we obtain

f2k−1 =











− (−1)k

2k−1

√
1 − u2 U2k−2(u) + O(ǫ) for |u| < 1 ,

0 + O(ǫ) for |u| > 1 .

Here U2k−2(u) are the Chebyshev polynomials of the second kind. We recall that the

Chebyshev polynomials of the first and the second kind form a sequence of orthogonal

polynomials on the interval [−1, 1] with the weights (1−u2)−1/2 and (1−u2)1/2 respectively.

To find the leading density σℓ(u) inside the interval |u| < 1 we can use the trigonometric

definition of the Chebyshev polynomials which corresponds to choosing parametrization

u = cos θ with 0 ≤ θ ≤ π. Thus, taking the limit g → ∞ we obtain for the leading density

the following expression

σℓ(u) =
2

π

∞
∑

k=1

(

sℓ
2k−1f2k−1(θ) + sℓ

2kf2k(θ)
)

, (2.32)

where

f2k(θ) = (−1)k
cos 2kθ

2k
, f2k−1(θ) = −(−1)k

sin(2k − 1)θ

2k − 1
. (2.33)

Given the proposal (2.16) for the coefficients sℓ
k, we can now sum the series for σℓ(u) and

obtain

σℓ(u) =
1

π
. (2.34)

Thus, inside the interval [−1, 1] the density σℓ(u) is constant.

We note that the functions fk(θ) provide a complete set of functions on the interval

[0, 2π], while on the interval [0, π] they are overcomplete. This fact is consistent with the

ambiguity for the coefficients sk we observed in the previous section. Moreover, it is not

hard to convince ourselves that the proposal for sℓ
k discussed in the previous section is the

only possible solution such that sℓ
2k−1 = sℓ

2k and for which the density σℓ(u) is constant

for |u| ≤ 1.
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Further, it is easy to sum up the series defining the leading density for |u| > 1. The

result is

σℓ(u) =
1

2π



2 −
√

2
√

1 − u(u ∓
√

u2 − 1)



 . (2.35)

Here the minus and plus signs in the denominator corresponds to the regions u > 1 and

u < −1 respectively. The plot of the complete analytic solution for σℓ(u) is presented in

figure 2. It should be compared to the plot of the numerical solution obtained by using

in the series representation for the density the coefficients sℓ
k obtained from our numerical

analysis. The numerical plot corresponds to taking g = 40 and truncating the series at

k = 20.

Finally, we mention the expression for the scaling function f(g) in terms of the density

σ(u):

f(g) = 32g3

∫ ∞

−∞
duσ(u) = 8g

∫ ∞

−∞
duσℓ(u) + . . . = 4g + . . .

This completes our discussion of the leading order analytic solution of the BES equation

in the strong coupling limit.

2.5 Subleading corrections

Here we will investigate the first subleading correction to the leading coefficients sℓ
k. By

expanding the BES equation we have already obtained equation (2.24) which expresses the

subleading density ssℓ
n in terms of the leading one:

Zℓ
2m−1,rs

sℓ
r = −Zsℓ

2m−1,rs
ℓ
r −

1

2(2m − 1)
sℓ
2m−1 . (2.36)

Again this equation is degenerate and needs to be supplemented by a second one that

appears at higher order in 1/g in the BES equation. Substituting the explicit form of

the coefficients sℓ
n obtained above, the right hand side of eq. (2.36) is seen to vanish (i.e.

K(c) ℓssℓ = 0), which already implies tight restrictions on the subleading corrections ssℓ. As

discussed above, this equation allows for solving for half of the components. For instance,

using eqs. (2.14) and (2.17) we can solve for the even components in terms of the odd ones

ssℓ
2m = −

∞
∑

n=1

(−1)m−n 32

π

m3

(4m2 − (1 − 2n)2)(1 − 2n)2
ssℓ
2n−1 . (2.37)

To obtain another equation constraining the subleading solution, we examine correc-

tions to the BES equation as follows. From the O(1/g) contribution to the even rows of

the BES equation (2.20) we find

sℓ
2n = 8nZssℓ

2n,1 − 4nZℓ
2n,mssℓ

m − 4nZsℓ
2n,msℓ

m (2.38)

−16n(2m − 1)
[

Zℓ
2n,2m−1Z

ℓ
2m−1,rs

ssℓ
r + Zℓ

2n,2m−1Z
sℓ
2m−1,rs

sℓ
r + Zℓ

2n,2m−1Z
ssℓ
2m−1,rs

ℓ
r

+Zsℓ
2n,2m−1Z

ℓ
2m−1,rs

sℓ
r + Zsℓ

2n,2m−1Z
sℓ
2m−1,rs

ℓ
r + Zssℓ

2n,2m−1Z
ℓ
2m−1,rs

ℓ
r

]

.
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To eliminate the term in sssℓ we turn to the odd rows of the O(1/g2) equation

−2(2m − 1)
[

Zℓ
2m−1,rs

ssℓ
r + Zsℓ

2m−1,rs
sℓ
r + Zssℓ

2m−1,rs
ℓ
r

]

= ssℓ
2m−1 . (2.39)

Using this together with (2.22) and (2.24) to simplify (2.38) we obtain

Zℓ
2n,m(−1)mssℓ

m = −Zsℓ
2n,m(−1)msℓ

m − 1

4n
sℓ
2n . (2.40)

This can be combined with (2.36) into the full rank equation

Z̃ℓ
nmssℓ

m = −Z̃sℓ
nmsℓ

m − 1

2n
sℓ
n , (2.41)

where again the right hand side vanishes when evaluated on the leading solution sℓ found

above. We hope to analyze the structure of subleading terms more fully in future work.

3. Leading density from the integral equation

In the appendix we compute the inverse Fourier transform of the BES equation (rather

than that of its leading solution) to the rapidity variable u.4 In this section we will expand

the BES integral equation in the small parameter ǫ = 1/(2g) assuming that the density

expands as in eq. (2.31) and rederive the leading order solution σℓ(u) by different means.

It turns out that the branch cut of the square root functions defining the all-loops

Bethe-ansatz [10] forces us to distinguish the regimes |u| ≷ 1. The leading order BES

equation constrains the leading density σℓ(u) only within the unit interval; no condition is

obtained for |u| > 1. We will show that this equation has a unique solution, namely the

constant function σℓ(u) = 1/π, |u| < 1.

In the discussion of the last section, the even and the odd functions, f2k and f2k−1,

constitute equivalent complete sets of functions on the interval |u| ≤ 1. The constraint that

the density be constant in this region allows one to eliminate, e.g., the coefficients sℓ
2k−1

in favour of sℓ
2k (or vice versa). Now, to leading order only the even functions f2k have

support outside the interval |u| < 1. The knowledge of the density outside this interval

would then fix the remaining coefficients sℓ
2k.

Above, we have rather taken the opposite approach: pairing the numerical observation

that sℓ
2k−1 = sℓ

2k with the requirement that the density be constant within the unit interval

we could equivalently fix the density σℓ(u) on the whole real axis, c.f. eq. (2.35).

The leading terms in the strong coupling expansion of the BES equation are obtained

in appendix 5.2. We find
∫ 1

−1
du′ σℓ(u′) K̂(c) ℓ(u, u′) = 2

√

1 − u2 − 1√
1 − u2

, (3.1)

where

K̂(c) ℓ(u, u′) = −2







√

1 − (u′)2√
1 − u2

+
1

4
log







(√
1 − u2 −

√

1 − (u′)2
)2

(√
1 − u2 +

√

1 − (u′)2
)2












. (3.2)

4This approach to the BES equation was also pursued by A. Belitsky [25].
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In Fourier space, the potential for the BES equation is actually the kernel with the second

argument put to zero; or to put it differently, the kernel integrated on a delta function. In

the rapidity plane this means that the potential is the integral of the kernel on a constant

function. By construction, our leading equation is solved by

σℓ(u) =
1

π
, |u| < 1 . (3.3)

Let us check whether there is a second solution inside the interval |u| < 1. To this end, we

put

U =
√

1 − u2 , V =
√

1 − (u′)2 (3.4)

and differentiate the whole equation in U . Next, we substitute U2 → U and V 2 → V to

obtain

1 +
1

2U
=

∫ 1

0
dV σ̃(V )

( 1

U
− 1

U − V

)

, (3.5)

where σ̃ is the density written in the new variables but including the transformation of the

integration measure:

σ̃ = σ

√
V√

1 − V
(3.6)

There is no regular density that could yield 1/U from the Hilbert transform (i.e. the second

term on the r.h.s.). We will therefore look for a density that produces the constant term on

the l.h.s. from the Hilbert transform, and whose norm is defined by the 1/U terms. Now,

1

π

∫ 1

0
dV

√
V√

1 − V

1

U − V
= −1 , − 1

π

∫ 1

0
dV

√
1 − V√

V

1

U − V
= −1 (3.7)

and in the first case the normalization is 1/2, while in the second it is −1/2. Note that the

symmetric combination of the two trial densities

√
V√

1 − V
+

√
1 − V√

V
=

1√
V
√

1 − V
(3.8)

goes to zero under the Hilbert transform whereas it does affect the norm. Thus, a solution

exists and it is unique. We have to choose

σ̃(V ) =
1

π

√
V√

1 − V
(3.9)

which corresponds to σ(u′) = 1/π.

In appendix 5.2. we further derive the next-to-leading order of the BES equation. We

find
∫ 1

−1
du′ σsℓ(u′) K̂(c) ℓ(u, u′) = 0 , : |u| < 1 .

By what was said above the leading dressing kernel is invertible on [−1, 1]. We therefore

conclude

σsℓ(u) = 0 , |u| < 1. (3.10)
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No constraint is found on the subleading density outside the unit interval.

We refrain from pushing the analysis any further for the following reasons: First,

at the next order we would perhaps encounter the same degeneracy while we lack an

independent condition like sℓ
2k = sℓ

2k−1 that would allow us to make progress. Second,

the naive expansion in ǫ quickly leads to expressions with rather hard singularities in u, u′

which are difficult to handle consistently.

The original BES equation has the property that the energy is given by the value of

the density at zero. In the rapidity variables this means that we can recover the leading

contribution to the energy from the normalization of σℓ. Alternatively, we may use the

formula

E(g) = log(S) 8g2

[

1 − 2g2

∫ ∞

−∞
duσ(u)

(

i

x+(u)
− i

x−(u)

)]

=
2 log(S)

ǫ2

[

1 − 2

ǫ2

∫ 1

0
duσ(u)

(

2
√

1 − u2 − ǫ + . . .
)

−

− 2

ǫ2

∫ ∞

1
duσ(u)

(

ǫ

u2
(

1 +
√

1 − 1
u2

)

− 1
+ . . .

)]

.

It is instructive to see how the value of the energy predicted from string theory is repro-

duced: The contribution of the constant part of σℓ within the unit interval cancels the

leading 1 in the square bracket. On the other hand, the next-to-leading term would receive

a contribution from an a priory non-vanishing subleading density inside the unit interval.

We get

E(g) = log(S) 8g





∫ 1

0
duσℓ(u) −

∫ ∞

1
du

σℓ(u)

u2
(

1 +
√

1 − 1
u2

)

− 1

− 2

∫ 1

0
duσsℓ(u)

√

1 − u2

)

+ . . . = log(S) 4g + . . .

Here we used an identity

∫ 1

0
duσℓ(u) −

∫ ∞

1
du

σℓ(u)

u2
(

1 +
√

1 − 1
u2

)

− 1
=

∫ ∞

−∞
duσℓ(u) .

satisfied by the leading density and also the fact that the subleading density vanishes

inside the unit interval. In fact, the absence of the subleading density can be considered

as a consistency test on our equations.

4. Conclusions

In this paper we analyze the strong coupling limit of the BES equation which describes the

universal scaling function of high spin operators in N = 4 gauge theory. We have shown

that expanding the BES equation in inverse powers of the coupling constant leads to two
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equations for the large g solution, one appearing at the leading while the other at the

subleading order in 1/g. Together they determine a unique solution in the strong coupling

limit whose exact analytic form we present.

Obviously, the next step would be to understand the structure of the higher order

perturbation theory around the strong coupling point and, in particular, to derive the

next-to-leading corrections to the universal scaling function f(g). We make some progress

in this direction by deriving a pair of equations for the subleading solution, but also point

out some subtleties that arise in developing the expansion around the leading order solution.

As was shown in [11] (see also [26]), the coefficients of the perturbative series describing

the solution of the BES equation at weak coupling admit an analytic continuation to strong

coupling, where they coincide with those predicted by string theory. The approach we adopt

here can be considered as another, complementary way to analytically continue from weak

to strong coupling.

On the rapidity u-plane the leading fluctuation density σℓ(u) appears to be constant

inside the unit interval |u| < 1. We could argue that this constant part of σℓ(u) is an

artifact of the way the BES equation was derived: The non-vanishing constant part of the

leading density offsets the splitting of the weak-coupling density into a log divergent one-

loop part and a regular higher loop piece carrying log S as a coefficient. Further, as we have

shown, the subleading correction inside the unit interval is absent; in a manner of speaking

a gap opens between [−∞,−1] and [1,∞]. This could be qualitatively compared to the

results obtained from string theory. Indeed, the solution of the integral equation describing

the classical spinning strings in AdS3 × S1 [27] in the limit S → ∞ with spin J along S1

fixed has support only outside the interval |u| < 1. The same behavior is expected5 for the

GKP solution which is obtained in the limit J → 0. For finite S the solution is elliptic and

it exhibits logarithmic singularities in the limit S → ∞. On the other hand, our strong

coupling density (2.35) is an algebraic function which carries log S as a normalization. Of

course, this density leads to the same energy as for the GKP string. Thus, it is desirable

to understand the detailed matching between the string density (higher conserved charges)

and the density we found from the strong coupling limit of the BES equation. We plan to

return to this interesting question elsewhere.

Acknowledgments

We are grateful to Andrei Belitsky, Sergey Frolov, Ivan Kostov, Didina Serban and Matthias

Staudacher for valuable discussions. I. R. K. and M. K. B. would like to thank Sergio

Benvenuti and Antonello Scardicchio for collaboration on the early stages of this project.

This work was supported in part by the EU-RTN network Constituents, Fundamental

Forces and Symmetries of the Universe (MRTN-CT-2004-005104), by the INTAS contract

03-51-6346, by the NWO grant 047017015, and by the National Science Foundation under

grant No. PHY-0243680. The work of L. F. A. was supported by the VENI grant 680-47-

113. The work of G. A. was supported in part by the RFBI grant N05-01-00758 and by

the grant NSh-672.2006.1.

5We would like to thank Sergey Frolov for discussions of this point.

– 16 –



J
H
E
P
0
4
(
2
0
0
7
)
0
8
2

A. The inverse Fourier transform of the BES equation

Let us define the kernels

K+(u, u′) =

(

1 − g2

x+(u) x−(u′)

) (

1 + g2

x+(u) x+(u′)

)

(

1 − g2

x−(u) x+(u′)

)(

1 + g2

x−(u) x−(u′)

) , (A.1)

K−(u, u′) =

(

1 + g2

x−(u) x+(u′)

)(

1 − g2

x−(u) x−(u′)

)

(

1 + g2

x+(u) x−(u′)

) (

1 − g2

x+(u) x+(u′)

) , (A.2)

with

x±(u) =
1

2

(

u ± i

2

)

(

1 +

√

1 − 4g2

(u ± i
2)2

)

. (A.3)

We further define

K̂0(u, u′) =
i

2
∂u log

(

K+(u, u′)K−(u, u′)
)

, (A.4)

K̂1(u, u′) =
i

2
∂u log

(

K+(u, u′) /K−(u, u′)
)

. (A.5)

In the same way as in appendix D of [6] we may show that

K̂0,1(u, u′) = 2g2

∫ ∫ ∞

−∞
dt dt′eiut+iu′t′ |t|e−(|t|+|t′|)/2K0,1(2g|t|, 2g|t′|) , (A.6)

where K0,1 are defined in (2.4) in the main text. The dressing kernel is [11]

K(c)(2g|t|, 2g|t′ |) = 2g2

∫ ∞

−∞
dt′′ K1(2g|t|, 2g|t′′|)

|t′′|
e|t′′| − 1

K0(2g|t′′|, 2g|t′|) (A.7)

and its Fourier back-transform yields

K̂(c)(u, u′) = 2g2

∫ ∫ ∞

−∞
dt dt′eiut+iu′t′ |t|e−(|t|+|t′|)/2K(c)(2g|t|, 2g|t′ |)

=
1

4π2

∫ ∫ ∫ ∞

−∞
dv dv′ dt′′ K̂0(u, v)

e−i(v+v′)t′′

1 − e−|t′′|
K̂1(v

′, u′) . (A.8)

In the u, u′ variables the BES equation becomes:

0 = 2π σ(u) − 2

∫ ∞

−∞
du′ σ(u′)

1

(u − u′)2 + 1
(A.9)

+

∫ ∞

−∞
du′

(

σ(u′) − 1

4πg2

)(

K̂0(u, u′) + K̂1(u, u′) + 2K̂(c)(u, u′)
)

.

We have written the potential as the integral of the kernels on the constant function

−1/(4πg2), i.e. the Fourier back-transform of −1/(2g2) δ(t′).
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B. The strong coupling limit

The integration over t′′ in eq. (A.8) is not well defined. To make sense of it we borrow the

derivative from K̂0 (c.f. (A.4)) on the right:

∂v′

∫ ∞

−∞
dt′′

e−i(v+v′)t′′

1 − e−|t′′|
= −i

∫ ∞

−∞
dt′′e−i(v+v′)t′′

(

t′′

e|t
′′| − 1

+ t′′
)

(B.1)

= ∂v′
(

−Ψ(i(v + v′)) − Ψ(−i(v + v′)) + 2πδ(v + v′)
)

,

where Ψ(v) is the digamma function. We may then partially integrate the outer derivative

back to act on K̂0.

The physical situation we consider is in a kinematical regime in which u scales with 2g

at strong coupling, as can be seen for instance from the numerical studies of the integral

equation for density of fluctuations in [6]. In the following we will rescale u → 2g u and

consider a perturbation series in ǫ = 1/(2g).

In the middle integral in eq. (A.8) we rescale and employ the asymptotic expansion of

the digamma function:

−Ψ(i(v + v′)) − Ψ(−i(v + v′)) + 2πδ(v + v′) (B.2)

→ − log
(

(v + v′)2
)

+
π

g
δ(v + v′) + O(ǫ2)

Note that we have discarded a term log(2g) + c0, where c0 is an integration constant from

the differentiation trick. A constant integrated onto the leading order of K̂1 in the second

argument (or K̂0 in the first) actually yields zero. Further, the derivative of the exact

expression in terms of the digamma function is a principal value for 1/(v + v′) (i.e. a cut-

off at zero). We usually evaluate log((v + v′)2) under the subsequent v, v′ integrations

by partial integration, albeit using a Cauchy principal value. It ought not matter which

definition is used for the principal value.

After rescaling we find the following leading order dressing kernel in configuration

space:

K̂(c) ℓ(u, u′) = − 1

2π2

∫ ∫ ∞

−∞
dv dv′K̃ℓ

1(u, v)

(

1

2
log

(

(v + v′)2
)

)

K̃ℓ
0(v

′, u′) . (B.3)

Here K̂0,1 = ǫK̃0,1. To leading order

|u| > 1 : x+(u) = x−(u) =
1

2ǫ
u

(

1 +

√

1 − 1

u2

)

+ . . . (B.4)

|u| < 1 : x+(u) =
1

2ǫ

(

u + i
√

1 − u2
)

+ . . . (B.5)

x−(u) =
1

2ǫ

(

u − i
√

1 − u2
)

+ . . .

from which it is easy to obtain

K̃ℓ
0(u, v) = 0 : |v| > 1 , K̃ℓ

1(u, v) = 0 : |u| > 1 (B.6)
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and the non-vanishing sectors

|u| < 1 : K̃ℓ
0(u, v) = π(δ(u − v) + δ(u + v)) , (B.7)

|u| > 1 : K̃ℓ
0(u, v) = −2

√
1 − v2

√

1 − 1
u2

1

u2 − v2
,

and

|v| < 1 : K̃ℓ
1(u, v) = π(δ(u − v) + δ(u + v)) − 2√

1 − u2
, (B.8)

|v| > 1 : K̃ℓ
1(u, v) = − 2√

1 − u2

(

1 +

√

1 − 1

v2

v2

u2 − v2

)

.

In particular, the leading contribution (B.3) to K̂(c)(u, u′) is only non-vanishing when both

u, u′ lie in the unit interval. Let us evaluate eq. (B.3) explicitly, plugging in the formulae

for K̃ℓ
0,1 and executing the two integrations in turn. First,

(
∫ −1

−∞
+

∫ ∞

1

)

dv′
1

2
log

(

(v + v′)2
)

K̃ℓ
0(v

′, u′)

= −2π log
(

√

1 − (u′)2 +
√

1 − v2
)

: |u′|, |v| < 1 (B.9)

= −π log
(

v2 − (u′)2
)

: |u′| < 1 , |v| > 1 ,

while the v′-integration over the unit interval contributes
∫ 1

−1
dv′

1

2
log

(

(v + v′)2
)

K̃ℓ
0(v

′, u′) =
π

2
log

(

(v2 − (u′)2)2
)

. (B.10)

Hence, if |u′|, |v| < 1
∫ ∞

−∞
dv′

1

2
log

(

(v + v′)2
)

K̃ℓ
0(v

′, u′) (B.11)

= −2π log
(

√

1 − (u′)2 +
√

1 − v2
)

+
π

2
log

(

(v2 − (u′)2)2
)

=
π

2
log







(√
1 − v2 −

√

1 − (u′)2
)2

(√
1 − v2 +

√

1 − (u′)2
)2







and otherwise we find zero. It is then easy to see that

K̂(c) ℓ(u, u′) = −2







√

1 − (u′)2√
1 − u2

+
1

4
log







(√
1 − u2 −

√

1 − (u′)2
)2

(√
1 − u2 +

√

1 − (u′)2
)2













to leading order in the strong coupling expansion.

The rescaled BES equation is

0 = 2π σ(u) − 2

∫ ∞

−∞
du′ σ(u′)

ǫ

(u − u′)2 + ǫ2
(B.12)

+

∫ ∞

−∞
du′

(

σ(u′) − ǫ2

π

) (

K̃0(u, u′) + K̃1(u, u′) +
2

ǫ
K̂(c)(u, u′)

)

.
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Note that the kernel in the second term on the r.h.s. is a representation of π δ(u − u′) so

that the first two terms cancel for small ǫ. The numerical analysis displayed in the paper

suggests to look for a solution

σ(u′) = ǫ2 σℓ(u′) + ǫ3 σsℓ(u′) + O(ǫ4).

The leading equation is

∫ 1

−1
du′

(

σℓ(u′) − 1

π

)

K̂(c) ℓ(u, u′) = 0 . (B.13)

It constrains the density σℓ only inside the unit interval. We prove in the main text that

the obvious solution

σℓ(u′) =
1

π
: |u′| < 1 (B.14)

is also the only one. At the next order we find the equation

0 =

(∫ −1

−∞
+

∫ ∞

1

)

du′

(

σℓ(u′) − 1

π

)

(

K̃ℓ
0(u, u′) + K̃ℓ

1(u, u′) + 2K̂(c) sℓ(u, u′)
)

+

∫ 1

−1
du′ σsℓ(u′)K̂(c) ℓ(u, u′) . (B.15)

Now, to leading order K̃0(u, u′) vanishes when |u′| > 1 so that the K̃ℓ
0 term can be dropped.

We show below that the other two kernels in the first line cancel. Hence for any σℓ the last

equation reduces to
∫ 1

−1
du′ σsℓ(u′) K̂(c) ℓ(u, u′) = 0 .

It follows that

σsℓ(u′) = 0 : |u′| < 1 (B.16)

because K̂(c) ℓ is invertible on the unit interval (see section 3). At this stage we cannot

make a statement about σsℓ outside the unit interval.

To show the aforementioned cancellation of the two kernels, let us work out K̂(c) sℓ(u, u′)

for |u′| > 1. In this case, K̃ℓ
0(v

′, u′) in (B.3) vanishes, so that we pick up the subleading

correction in the right factor while the other two terms may still be taken at leading order.

From eq. (A.4) we can work out

|u| < 1, |u′| > 1 : K̃sℓ
0 (u, u′) =

u2 + (u′)2

(u2 − (u′)2)2
, (B.17)

|u| > 1, |u′| > 1 : K̃sℓ
0 (u, u′) =

1 − u2 − (u′)2

∆
,

where we have introduced the notation

∆ = (u2(u′)2 + |uu′|
√

u2 − 1
√

(u′)2 − 1)(−2 + u2 + (u′)2)

−u2(u2 − 1) − (u′)2((u′)2 − 1) .
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It is not too hard to check that
∫ ∞

−∞

1

2
log((v + v′)2) K̃sℓ

0 (v′, u′)

= − π

(u′)2 − v2

√
1 − v2

√

1 − 1
(u′)2

: |v| < 1, |u′| > 1 , (B.18)

= 0 : |v|, |u′| > 1

from which we may easily deduce that

K̂(c) sℓ(u, u′) = −1

2
K̃ℓ

1(u, u′) : |u| < 1, |u′| > 1 . (B.19)
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